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I. _TRODUCTION

The different phases of the space shuttle mission operations and system analyses

are influenced by several random perturbations due to the dynamics of atmospheric

processes. From the mission planning point of view, there are few atmospheric

conditions of interest, such as thunderstorm, precipitation, cloud ceiling, peak surface

wind speed, etc. These atmospheric conditions, called parameters, are actually

constraints on the mission operations. An atmospheric parameter is a random variable

which attains either a permissible or not permissible value. As such, each of these

atmospheric parameters is assigned the values of either 0

outcomes, respectively. These atmospheric parameters

random variables.

or 1, for GO or NOGO

are inherently dependent

An important part of mission planning is being able to provide, ahead of time, a

good assessment of GO/NOGO status for different atmospheric parameters as well as

conditional probabilities involving GO and/or NOGO outcomes. Specifically, it is of

interest to effectively address certain questions pertaining to the assigned constraints for

the different'mission phases of the space vehicle (see Smith, Batts, and Willet (1982),

also Smith, and Batts (1993)). The questions of interest involve:

1.) The probability that the assigned atmospheric constraints will (or will not) occur

during a particular time.

2:) The probability that the assigned atmospheric constraints will (or will not) occur

for N consecutive days, at a particular time of the day.



3.) Given that the assigned constraints have occurred (or have not occurred) for n

consecutive days, at a particular time of the day, what is the probability that the

constraints will continue for N additional days?

4.) The probabilities of runs of GO and NOGO outcomes.

5.) Estimating certain conditional probabilities involving GO and/or NOGO outcomes.

Effectively addressing and giving specific answers to these types of questions are

useful in many ways, for instance,

a) determining design criteria for the space vehicle,

b) establishing flight operational rules, and

c) setting up effective cost assessments.

The purpose of this technical report is to present an analytical study of the topics

involved, such as the theories of runs and Markov chains, as well as an attempt to give

answers to the questions raised above. We construct probabilistic models based on the

nature of the problem, as well as certain assumptions relevant to atmospheric

conditions. These models lay the ground work to establish a theory that would support

a GO - NOGO decision.
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II. PRELIMINARIES

The random variables generated by the atmospheric conditions, such as wind

speed, thunderstorm, and precipitation, are not independent in general. In fact, a

meteorological observation is not usually independent of the preceding conditions.

However, the dependencedecreasesasthe length of the time interval betweensuccessive

events increases. For example, the amount of rain in a month is influenced to a small

but definite extent by the amount of rain in the precedingmonth, but the amount of

rain in a year bears practically no relation to the amount of rain in the precedingyear.

In daily observations the interdependenceis found to be even more marked. For

example, the probability of a given day being rainy is much greater if it was raining on

the precedingday than if it did not. This is due to the fact that rain tends to persist

from day to day. Thus, in general, it is the characteristic of meteorologicalevents to

stick together; high or low values tend to occur in clusters rather than as isolated

incidents.

Brooks and Carruthers (1953) suggestedthe existence of an underlying Markov

chain, however, it does not seemto have beeninvestigated in their work. A Markov

chain model for daily rainfall occurrencewas used by K. R. Gabriel and J. Neumann

(1957, and 1962). This model was shown in their work to give a good fit to various

aspectsof rainfall occurrencepatterns.

The underlying dependencestructure in the model is a crucial aspectin the
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development of our study. Based on the nature of the meteorological observations, and

the above mentioned works, it seems reasonable to utilize a dependence structure of the

Markovian type.

We should point out here that several authors used the geometric distribution, the

negative binomial or related distributions as models for meteorological activities and

wet-dry cycles of rain. For example, a distribution of weather cycles by length was

investigated using geometric distribution (see K. R. Gabriel, and J. Neumann (1957)).

The negative binomial and a modification of it were used as prospective models to

represent the variation of thunderstorm activity (see L. W. Falls, W. O. Williford, and

M. C. Carter (1970)).

It is interesting to note that these distributions do arise under the Markovian

dependence structure which is adopted in our models. Of course, they may also

originate under different circumstances.

Next, we give a definition of Markov chains.

1. Markov chains: Consider a sequence of random variables X 0 , X 1 ,..., and suppose

that the set of possible values of these random variables is {0, 1, ..., M}. It will be

helpful to interpret X n as being the state of some system at time n, and, in accordance

with this interpretation, we say that the system is in state i at time n if Xn = i.

4



The sequence of random variables is said to form a Markov chain if each time the

system is in state i there is some fixed probability Pij that it will next be in state j.

That is, for all i 0,...,in_ 1 , i,j E {0,...,M}

P{Xn+I =j[Xn =i, Xn-1 =in-l,'", Xl=il, XO =io} = Pij (1)

The values Pij ' 0 < i < M,

Markov chain and they satisfy

Pij > 0,

0 < j < M, are called the transition probabilities of the

M

F_, Pij = 1, i=0, 1,...,M. (2)
j = 0

It is convenient to arrange the transition probabilities Pij

follows:

p

i

P00 P01 "'" POM

P10 Pll "'" PIM

PMO PM1 "'" PMM

in a square array P as

Such an array is called a transition probability matrix. Knowledge of the transition

probability matrix and the distribution of X 0 enables us, at least in theory, to compute

all probabilities of interest. For instance, the joint probability mass function of

X 0,X! .... ,X n is given by

5



P {Xn = in, Xn_1 = in_ 1 ,..., Xl = il, XO= io }

= P {Xn = in [ Xn-1 = in-1 , "", Xo = io } P(Xn-1 = in-1 ' "'" Xo = io }

= Pin_1 , in P{Xn_ 1 = in_1 , ..., X0= i0}, and continual repetition of this

argument yields that the aboveis equal to

P {Xn = in, Xn_l = in-1 , ..., X1 = il,

-Pin-1 , in Pin-2 ,in-1 "'" Pil 'i2

x 0 = i0 }

Pi0, il P{XO = iO }" (3)

Thus, for a Markov chain, Pij represents the probability that a system in state i

will enter state j at the next transition. We can also define the two-stage transition

after two
p!_) , that a system, presently in state i, will be in state jprobability,

= jlXm = i}.

as follows:

P{X2 = Jl Xl:- k, X 0 = i} P{X 1 = kl X 0 -- i}

additional transitions. That is,

p!2) = P{Xm+2

Then p!2) can be computed from the Pij

P!_) =P{X2 =jlXo =i}

M
= E

k=O
M

= k_--O Pkj Pik •
(4)

r_(n) are defined byIn general, the n-stage transition probabilities, denoted as _-,j ,

p(n.) = P{Xn = j[ Xm = i}. (5)U +m



1.2 Remarks: 1.) We note that if Pij is the i-jth entry of the transition matrix P,

then n{n.) is the i-jth entry of pn.

2.) In the model, a Markov chain with two stateswill be used. That is, M = 1.

1.3 Example: Suppose that if it rains today, then it will rain tomorrow with

probability a; and if it does not rain today, then it will rain tomorrow with probability

8. If we say that the system is in state 0 when it rains and state 1 when it does not,

then the above is a two state Markov chain having transition probability matrix

PO0 PO1 1 o_ 1-a

Pl0 Pll _ 1-_

If it is raining today the probability that it will rain two days from now is

pI__ = p020+ p01pl0 =42 + ¢1-_/_.

The remaining probabilities pll ),

be given similar interpretations.

pt20), and pt"l ) , which are the entries of p2, can

[]

p!?
The next result, known as the Chapman - Kolmogorov equations, shows how the

can be computed.

1.4 Lemma (The Chapman - Kolomogorov Equations):

__ ¢,./
k = 0 ik l-'kj

for all 0 <r <n.
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Proof:

p!y) = P{Xn =j[X 0 =i}

= ]_ P{Xn =j, Xr =klX o =i}
k

= E e{Xn = j IX,.= k, Xo = i}
k

= _ Pki Pik •
k

P{X r =klXo =i}

[]

2. Unconditional probabilities: The conditional probabilities p!_) can be used to

derive expressions for unconditional probabilities by conditioning on the initial state.

For instance,

M
P{Xn = j} = E P(X,= jlX0= k} P{X0= k}

k=0

M p!_) P{X 0 k}.--- _ =
1:=0

(6)

3. Convergence of Markov Chains: For a large number of Maxkov chains it turns out

that p!_) converges, as n-.oc, to a value r j that depends only on j. That is, for

large values of n, the probability of being in state j after n transitions is

approximately equal to 7rj, no matter what the initial state was. It can be shown that

a sufficient condition for a Markov chain to possess this property is that

P!y) > 0 for all i,j = 0,1,...,M, and some n>0. (7)

Markov chains that satisfy inequality (6) are said to be ergodic. Since Lemma (2.4)

yields

p!y+ 1) = _ p(n)
k = 0 ik Pkj ,

it follows, by letting n_, that for ergodic Markov chains



M

E Ptj. (8)7rj = k=O

Furthermore, since M
j=O

, by letting n_oo, we also obtain,

M

E = 1. (9)
j=O

In fact, it can be shown that the

solutions of equations (7) and (8).

which is stated without proof.

rj , 0 < j <_ M, are the unique nonnegative

We sum up these facts in the following result,

3.1 Theorem: For an ergodic Markov chain the limit r j = n--*oolim p!y)

the rj, 0 _< j _<M are the unique nonnegative solutions of
M M

rj = __, rk Pkj and _ rj = 1.
k=0 j=0

exists, and

3.2 Example: Consider Example 1.3, in which we assume that if it rains today, then it

will rain tomorrow with probability a; and, if it does not rain today, then it will rain

tomorrow with probability ft.

probabilities of rain and of no rain,

which yields

rr1 + 7rI

From Theorem 3.1 it follows

_r0 and "1, are given by

rr0 = a r 0 + 3r 1

r 1 = (1-,_) r 0 + (1-fl) _'1

=1

fl
rO - l+fl-o'

that the limiting

rrl- À+fl-a

9



For instance, if

is ,r0- 3_
7 "

a = .6, /_ = .3, then the limiting probability of rain on the nth day

[]

The quantity _rj is also equal to the long run proportion of time that the Markov

chain is in state j, j = 0, ..., M. To intuitively see why this might be so, let pj

denote the long run proportion of time the chain is in state j. Using the strong law of

large numbers, it can be shown that for an ergodic chain such long run proportions exist

and are constants. Now, since the proportion of time the chain is in state k is Pk

and since, when in state k, the chain goes to state j with probability Pkj , it

follows that the proportion of time the Markov chain is entering state j from state k

is equal to Pk Pkj Summing over all k shows that pj , the proportion of time the

Markov chain is entering state j, satisfies

Since it is also true that

M

= E Pk PkjPJ k = 0

M

E pj =1,
j=l

it thus follows, since by Theorem 3.1 the

the above, that pj = _j , j -- 0,..., M.

7rj , j = 0, ..., M are the unique solution of

10



lII. PROBABILISTIC MODELS

The binomial model, which is the sum of independent random variables each of

which assumes either a success or a failure outcome, is clearly not adequate for the

problem under consideration because it deals with independent trials. So, the need for

a model with dependent trials is identified.

We consider in this section a generalization of the binomial distribution which

incorporates a built-in dependence structure in its trials. Two versions of a generalized

Bernoulli model are presented. Each of these versions possesses two parameters.

Therefore, methods of estimating these parameters are discussed including an analytical

method based on a modified version of the maximum likelihood estimation technique.

1. A generalization of the Bernoulli model: Consider a sequence of random variables

each of which takes either the value 0 or 1 (for GO or NOGO, respectively). We do

not assume that these random variables are independent. The basic assumption about

this interdependence is that given the present state, the future and the past states are

independent. That is,

P(Xi+I Xi-1 IXi)=P(Xi+I IXi)P(Xi-1 IXi). (10)

Specifically, given the state (or value) of a random variable at present time i, say X i ,

11



its state (or value) at times i -t- 1, Xi + 1 , dependsonly on its state (or value) at time

i, Xi . This is a Markovian type dependencestructure, and sucha probabilistic model

is referred to asa Markov chain with two states {0, 1}. A Markov probability model,

with two states, usually possessestwo parameters. These two parameters could be

defined in different ways. For instance,we considerhere two versionsof this model, in

the first we take two parametersasthe conditional probabilities

and

01 = P(Xi = NOGO l Xi_ 1

00 =P(Xi =NOGOIXi_ 1

= NOGO),

= co).

In the second version we define the two parameters as

and

p = P(Xi = NOGO),

= P(Xi = NOGOI Xi_ 1 = NOGO).

Of course, the parameters 01 , 00

model 2. Hereafter, we shall use

in model 1 are related to the parameters p , :_ in

1 for a NOGO state, and 0 for a GO state.

1.1 Model 1: Let X 1 , X2, ... , Xn be a sequence of random variables each of which

takes on either the value of 1 or 0 as in the Bernoulli model. A Markovian

dependence is incorporated between successive observations. This yields a Markov

chain with two states whose parameters are the two conditional probabilities

12



and

o_ = P(X_ =llX__l =1),

oo = P(X_ =11x___ =o),

i = 2,...,n, (11)

i = 2,..., n. (12)

From (10) and (11), it follows that

P(Xi = OI Xi_ 1

and

P(Xi = 01 Xi_ 1

= 1) = 1-0! , i=2,...,n, (13)

=0)=1-0 0 , i=2,...,n. (14)

The transition probability matrix takes the form

p

m

1-0 0 00

1-01 01

_ m

(15)

Clearly, this model reduces to the case of independent Bernoulli trials if 00 = 01 .

Explicit formulas for the n-stage transition probabilities p!_) can be obtained using

the transition probability matrix P (see Feller, 1957). The final result may be written

in matrix form, the n-stage transition matrix

pn i

1 + oo -o 1
1-01 00 ]1-01 00

00 -0 0

-(1-01 ) 1-01

(16)

13



In the transition matrix pn each element

probability that a system, presently in state i,

transitions.

i,j = 0,,
will be in state j after

represents the

n additional

1.2 Remarks: (i) We observe here that, since 101- 001 < 1,

definition of pn in (7) tends to zero as n--oo. That is,

the second matrix in the

lim pn _ 1
n---*e¢ -- 1 "4- 00 -01

1

=1+0 o -01

[ A1-01 00

1-01 00

P.

(17)

This result is consistent with the result obtained had we used Theorem 3.1.

(ii) This model requires estimating the two conditional probabilities 01 and

way to estimate 01 and 00 is by using the appropriate relative frequencies

Gabriel and J. Neumann 1962): An analytical method, based on the

likelihood estimation technique, will be described later.

(iii) A Markov chain model of this form was found

approximation for the daily rainfall occurrence at Tel Aviv.

00 . One

(see K. R.

maximum

to be, at least, a close

It was shown also that it

fits the observed data (see K. R. Gabriel and J. Neumann 1962).

1.3 Model 2: This model differs from model 1 in that one of its parameters has a

different meaning. Consider a sequence X 1 , X 2 , ..., Xn of random variables each of

14



which takes on either the value

parameter

p = P(Xi = 1)

1 or 0. This model possesses the usual frequency

= 1-P(Xi =0), i= 1,2,...,n, (18)

and,

persistence in the chain.

0 = P(Xi = 11xi_ 1

in addition, another parameter 0 which measures the dependence or the degree of

=1)

=I-P(Xi=OIXi_ 1 =1), i = 2, 3, ..., n.

(19)

The relationship between model 2 and model 1 can be obtained, using

(19), by computing the other conditional probabilities as follows:

Let x = P(Xi = 11 Xi_ 1 = 0), then

p = P(Xi = 1, Xi_ 1

= P(Xi = 11 Xi_ 1

=0 p + x(1-p),

from which

and

= 1) + P(Xi = 1, Xi_ 1 =0)

= 1) P(Xi_ 1 = 1) + P(Xi = 11Xi_ 1

x = P(Xi = 11 xi_ 1 -- O) = l-p(1-O)p

1 - 2p + 0p
P(X i =OIXi_ 1 =0)= l-p

(18) and

= 0) P(Xi_ = 0 )

(20)

(21)

Thus {X 1 , ..., X n } is a stationary two-state Markov chain with transition matrix

p ]
1- 2p + Op (1-O)p

1 -p 1 -p

1-0 0

(22)

15



In this case the n-stage transition matrix takes the form

P-:E,p'-p °-phil (23)

Using Theorem 3.1

expect in this case.

it can be shown that :,r0 =l-p and 7r1 =p, which is what we

1.4 Remark: A Way to estimate the parameters p and 0 is by using the

appropriate relative frequency , as in the case with model 1. However, there is an

analytical way to estimate these parameters. We describe this method next.

2. Estimating the parameters: As pointed out earlier, the parameters of either model

can be estimated by using the appropriate relative frequency, see example, K.R. Gabriel

and J. Neumann 1962. Here we describe an analytical method based on the idea of

modifying the maximum likelihood (see Billingsley (1961), also see Devore (1976)).

2.1 The modified maximum likelihood method:

Let the transition matrix be P =

The full likelihood (or the joint distribution of X 1 , ... , X n ), using the Markov

assumptions in terms of e0 and 01 , can be written as

16



P(X 1 = x 1 , X 2 = x 2 , ..., X n = x n )

= P(Xl = Xl ). p(X 2 = x 2 IX 1 = Xl). P(X 3 = x 3 IX 2 = x 2 ) ."P(Xn =Xn IXn_l =Xn_l )

-- p xl (1 - p)l - z 1 fi Oli- 1 xi (1 - 01) (zi-1)(1 - z i )
i=2

x O_1- xi-1 )xi (1 -0 0)(1 - zi-I ) (1-z i),

oo

where p=P(Xi = 1)- 1+0 0-01

The term p xl (1 - p) l-Z1 represents the contribution due to the first state visited by

the process. The modified maximum likelihood method consists of neglecting the term

x 1p (1 - p) l-xl This idea was used by P. Billingsley in his development of the

asymptotic theory of maximum likelihood estimators, (see P. Billingsley (1961)).

Therefore, this method is particularly useful when n is large.

Now, the natural log of the likelihood, denoted by L, for the realization x 1 , x 2 ,..., Xn

can be expressed as

where

L = x I In p + (1 - x I ) ln(1 - p) + L' , (24)

L' = n00 In(l-00) + n01 ln00 +nl0 In(l-01) +nll In01. (25)

Tile nij , i, j = 0, 1,

for which x m = i

n00 + n01 + nl0 -4- nil

such that x,n = 1 and

estimators of 00 and

are the usual transition counts given by the number of indices m

and x m+l = j , m = 1, ..., n - 1 so that

= n - 1. For example, nil is the number of indices m

xm+ 1 = 1, for m = 1, ..., n- 1. Therefore, the required

01 are obtained by maximizing L' given in (25).

17



which yields

OL' _ no0 no1
_00-- 1-0-----0(-1) -1--_0:0,

no1
O0 no0 + no1 (26)

which yields

L !0 _ nlO nll_
_I-- I_--Z-_I(-1) +-_-I --0,

nll
t, 1 -- nlO + nll

I

(27)

2.2 Remarks: (i) We note that 02 L' 02 L'
002 < 0 and 0021

and 01, given by (26) and (27) do indeed maximize L'.

of 0o

< O, so, the values O"0

(ii) In the above derivation, both 00 and 01 are free to vary, so that when the value

is specified, the modified maximum likelihood of 01 is no longer given by (27).

(iii) For model 2, we can get the estimators of p and 0 by comparing the entries in

(15) and (22), to obtain

= O1 -- nil (28)
nl0 + nll'

00
and (ll_p-01 )p -00 ' which yields p= 1+ 00-01 "

Therefore,

18



- e° (29)
i+ _o-_1 '

where O0 and O"1 are given in (26) and (27), and it simplifies after some algebra to

nlO (nlO + nll ) (30)
= no0 nlO + 2n01 nlO + no1 nll

19



IV. DISTRIBUTIONS OF GO-NOGO STATES

=-

The two models presented in section 3 are technically equivalent. Therefore, for

convenience, we only use model 1 to discuss some distributions which involve the

number of GO and/or NOGO states.

1. Distribution of the m_mber of states of the same kind:

1.1 Distribution of the number of GO states: Let X be the number of successive GO

states until a NOGO state occurs. Then,

00 ...01

n

P(X=n)=(1-00)n-1 00 , n=l, 2, .... (31)

This is a geometric or Pascal probability distribution (a special case of the negative

binomial).

1.2 Distribution of the number of NOGO states: Similarly, if

successive NOGO states until a GO state occurs. Then,

P(Y = m) = O_n-1 (1 - O1), m = 1, 2, ....

Y is the number of

(32)

2. Distribution of recurrence time: A succession of NOGO states of length k, k >_ 0,

means a sequence of k-NOGO states preceded and followed by GO states. Therefore,

a NOGO succession of length

states.

k is equivalent to a recurrence time of k+l for GO

2O



2.1 Distribution of recurrence time of NOGO states: The following table illustrates

how the probabilities of different recurrence of NOGO states are computed.

k Recurrence time of NOGO Representation Probability

0 1 11

1 2 101

2 3 1001

3 4 10001

: k
k+l 100...01

01

(1 -0, )%
(1 -e, )(1 -00) 00
(1 -0, )(1 _%)2 00

(1 -01 )(1 -a O)k-1 80

2.2

by

Lemma: The mean and variance of recurrence time T 1

and

1 - (01 -00 )

/t 1 = O0 '

,r2 -- 1-01
02 (1 + 01 -00)

of NOGO states are given

(33)

(34)

Proof: Pl = lOl + 2(1 - o 1 )0 0 + 3(1 - 01 )(1 - 00 )0 0 + ...

=01 + (1-01)
1-0 o 0o [2(1- 00)+3(1-0 o)2 + ... ]

= 01 + (11-_ 0100) 00(-1) d[(1 - 00)2 + (1 -00)3

(1 - 01 ) d (1 -0 0 )2
=O1 + 1 -0 0 00(-l) _[ O0 ]

-4- °.,
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(1- oI ) eo(-1) [ _ + 1]
= 01 + 1 - O0 00

=O 1 +
(1 - 01 )(1 -t- 00 )

0o

Now_

I-(01-60)

-- 00

= where

E(T21 ) = i 01 +2 2 (1 - 01 )00 q- 32 (1 - 01 )(1 --00 )00 4- "'"

(1-01) 00 [22(1 - 00)-I'-:32(1-00) 2 -.{.- ... ]
=01 4- 1_00

(1-01) 00 (-1) d [2(1 - 00 )2 3(1 00 )3
= 01 Jr 1 - 00 _0 -t- - -t- "'" ]

=01 +
1 - 00 O0(_l) d--_O[(1- O0)(2(1-00) 4- 3(1 -00)2 4-

(i - 0I) 00(-I) d_0 [(1- O0) ( 0_- I)I=01 at- 1_00

__ 01 _ (1 - 01) 00[(1 - 00) (_) -{" :_ (-1)]
-- 1 - 00 00 00

2(1- eI ) (1 - e1) (1 + oo)
= 01 +" 02 + 00 02

2(1 - o1) + oo + e_ - eoe1
- e_

...)1
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Thus

2(1 - o, ) + oo + o_ - ooo, 1 - 2(o, - oo ) + (o1 - oo )2
_12 =

4 - 4

1 - 00 + 00 01 - 0o2

4

(1 -01 )

(1 + o,- oo).
rl

2.3 Distribution of recurrence time of GO states. We illustrate this also by a table

k Recurrence time of GO Representation Probability

0 1 100 1 - 01

1 2 OlO oo (1 - o_)

2 3 0110 o0 o1(1 - o 1 )

3 4 01110 00012 (1-01)

: k

k k+l 011...10 00 02 (l - 01)

2.4

Proof.

Lemma: The mean and variance of recurrence time T O

I - (01 - 00 )

PO = 1 -00 '

and

0o

:_ - (1 -01 )2 (1 + 01 - 00 ).

Is similar to the proof of Lemma 2.2, hence we omit it.
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3. Asymptotic distribution of the number of NOGO/GO states: Since NOGO and

GO states are represented by 1 and 0, respectively, it follows that the total number
n

of NOGO states in a sequence of n trials {X 1 X 2 , ..., Xn } is S = _ X k • It is
' k=l

shown in Feller, 1957, Chapter XIII, that S can be approximated by a normal

distribution, provided that n is large enough, this fact is given in the next result

without proof.

3.1 Theorem (Normal approximation of recurrence time of NOGO states): If the

recurrence time of NOGO states has mean _1 and variance _21 , then the number of

n
NOGO states in n trials S = _ X k is asymptotically normally distributed with

k = 1 na_.._

approximate mean _1 and approximate variance _31 , where _j and a21 are given

by (33) and (34).

A similar result for the recurrence time of GO states is given next.

3.2 Theorem (Normal approximation of recurrence time of GO states): If the

recurrence time of GO states has mean _0 and variance a 2 , then the number of GO

states in n trials is asymptotically normally distributed with approximate mean and

variance and _--_-0' respectively, where gO and a 2 are given by (35) and (36).

3.3 Remark: The asymptotic results, Theorems 3.1 and 3.2, neither tell how rapid

the distributions approach normality nor reflect the exact distributions for small n.

The exact distribution will be discussed in section V, analysis of runs.
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4. The distribution of numbers of successive GO followed by successive NOGO states:

Let X be a random variable representing the number of successive GO states and

let Y be a random variable representing the number of successive NOGO states. Then

X and Y are independent random variables. Define Z = X + Y. Then, Z represents

a number of successive GO states followed by a number of successive NOGO states, and

n-1
P {Z = n} = E

k=l
P(X = k) P(Y = n - k)

n-l_ Olk_ 1
k=l

(1 -01) (1-o o )n-k-1 O0

n-1 ok_l )n-k-I= oo (1-01 ) E (1-0 o
k=l

(1 -00 )n-1 _ 01n-1

= oo (1 -01) (1 -o O) -01 (37)

We note that the distribution (7) is symmetric in o0 and (1 -01 ), this is expected

because Z=X+Y=Y+X.

4.1 12emarks: (i) The distribution (37) can be considered as a generalization of the

negative binomial in the following sense. Let 1 - 00 = 01 , then

lim P{Z= n} = 00(1-01 )(n- 1)0] _-2
(1-0 0 )_01

= (n -1)(1 -01 )2 0_-2 ,
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which is the negative binomial probability of having the second NOGO to occur at the

nth trial.

(ii) The work of L. W. Falls, W. O. Williford, M. C. Carter, 1970, reached the

conclusion that the negative binomial and a modification of the negative binomial

distribution are adequate statistical models to represent thunderstorm events and

thunderstorm hits, respectively, at Cape Kennedy, Florida.
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V. ANALYSIS OF RUNS

We consider here sequences of NOGO and GO states. Here we follow the theory of

run as in S. S. Wilks, 1963, however our work provides some generality as the

probability of a GO outcome is not necessarily equal to that of a NOGO outcome.

Suppose that the total number of GO states is n O and that of the NOGO states is n 1 ,

with n O + n 1 = n. The class of all these sequences is actually the set of all ( n O )

permutations of n o GO states, and n 1 NOGO states. Each sequence consists of runs

of NOGO and GO states. The length of a run is the number of states in it.

Let r0k denote the number of runs of GO (or 0) states of length k, and let rlj denote

the number of runs of NOGO (or 1) states of length j.

00011001001101 is such that n O = 8, n 1 = 6, r01 = 1,

r12 = 2, and all other r's being zero.

For example; the sequence

r02= 2, r03= 1, rll = 2,

From the definition of these quantities we see that _ k r0k =n O and _] j rlj = n 1 .
k j

Let r0 = _ r0k , and r 1 = _ rlj be the total number of runs of GO andNOGO
k 3

states, respectively. Given the set of values of the r0k , the number of ways of

arranging the r0 runs of GO states is the multinomial coefficient

r0 r0 !

(rol,r02 ,...,tOn O)=rOlIrO2[...rOnO I (38)

Likewise, the number of ways of arranging the r 1 runs of NOGO states is

rl ) rl [
rll ' r12 , ..., rlnl = rll! r12[ ... rl"l ! (39)
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1. Remark: We observe here that r0 and r 1 can differ from each other by at most 1;

because if they differ by more than 1, this means that at least two runs of one kind of

states would have to be adjacent, contradicting the definition of a run. If r 0 = r 1 ,

then there are two ways of arranging the runs of GO and NOGO states, one sequence

begins with a run of GO state(s) and the other begins with a run of NOGO state(s).

2. Definition: Let 6(r 0 , r 1 ) be the number of ways of arranging r0 indistinguishable

objects of one kind and r 1 indistinguishable objects of a second kind such that no two

objects of the same kind appear together, then 6(r 0 , r 1 ) takes two possible values

{ 1, if [r0 - rl[ = 1 (40)6(r0'rl) = 2, if Jr0 rl] =0"

Therefore, the total number of ways of having r0k runs of GO states of lengths

k = 1, 2, ..., n o and of having rlj runs of NOGO states of lengths j= 1, 2, ..., n 1 is

ro! r 1! 6(r O,r 1)

rol!rO2!...ron O! rll!rl2 !...rln 1!

(41)

3. The probability of a fixed sequence of GO-NOGO states:

Consider a fixed sequence with r0k runs of GO states of lengths k= i, 2, ... , n o

and rlj runs of NOGO states of lengths j=l, 2, ..., n 1 . In order to obtain the required

probability, call it P(E); we start by conditioning on the state of the first trial. That

is, letting H denote the event that the first trial results in a NOGO, we then have
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P(E) = p P(E[H) + (1- p) P(E[H e ) (42)

oo

where p = P(NOGO) - 1 + 00-01 '

initial trial is a NOGO, then

see equation (20) with x = 01. Given that the

p(EIH) = 0nl-rl (1_00 )n o - r 0 (l_O 1 )r 1 +8 - 2
r -8+1

000

where 0hi1 - rl accounts for all the consecutive NOGO (or 1) states, (1 - 00 ) no - r0

accounts for all the consecutive GO (or 0) states, the term (1 - o1 )rl +8-2

accounts for the number of changes from a NOGO to a GO (or from 1 to 0) state. We

note that ifr 0 = r 1, then 6 = 2 and there are r 1 changes fromNOGO to GO state.

On the other hand, if r 1 > r 0 , then 8 = 1 and there are r 1 - 1 changes from NOGO

to GO state. The case r I < r 0 can not occur, by definition of runs since we begin

with a run of NOGO states. Finally, the term 000 -6+ 1 accounts for the number of

changes for a GO to a NOGO (or from 0 to 1) state. We observe here that if r 0 = r 1 ,

then 6 = 2 and there are r0 - 1 changes from a GO to a NOGO state, while there are

r 0 changes from a GO to a NOGO state if r 1 > r0

Thus

P(EIH ) = 011 - rl (1 - 00 )no - r0 (1 _ 01 )r1+6-2 00r0 - 6+ 1

f 1 -01 2 00 1 -01
:0_l-rl (l_00)n0 +1 (---_1)rl- (l_---_l)r0+ l (--_0)_

(43)
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Similarly, given that the initial state is a GO state, then

P(EIH c ) ---- _ O0 0 _(1 O0 )no - rO 01nl - rl r + 5 - 2 (1 O0 )r 1 6 + 1

(44)
00 2 + 1 O0

(1 O0) nO-2 011 +1 (1 ---O0 )tO- /1-01) rl (1--"_1)_"= - \ 01

Therefore, substituting (43) and (44) in (42), the probability P(E) of a given sequence

with r0k runs of GO states of lengths k = 1, 2, ..., n O and rlj runs of NOGO states

of lengths j = 1, 2, ..., n 1 is

n -2 (i o0)no+ 1 1-01 -2 00 )r0+l 1-01P(E) = POll - ( Oi )rl (1 - 00 ( -00 _

00 - 2 (1 - 01 1 O0
+(l_p) (l_O0)no -2 O_I +1 (1-_Oo)tO k----_l )rl+ (1---_1)_

(45)

0o

wherep- i + 00-01"

Since the event E in the above analyses may occur a total of

r0!r 1! 6(r 0,rl) ways, it follows that the probability of a sequence of

r01!...r0n 0! rll!...rln II

NOGO and GO states, as described above is

r0!rl! $(r0'rl) P(E)

r01!...r0n 0! rll!...rln 1 !

3O

:= P({rij }). (46)



4. Probability of runs of GO states of length k, k = 1, 2, ..., n o :

The probability formula obtained in (46) can be thought of as a joint p.d.f, of runs

of NOGO and GO states. If we are interested only in the p.d.f, of the runs of GO

states, that is, r0k , k = 1, 2,..., n O , we have to take the marginal distribution of (r01 ,

r02 , ...,r0n 0 ) in (46). That is, we must sum the probability P({rij }) with respect to

rll , r12 ,..., rln 1 This means that we must sum the formula (46) for all values rll ,

r12 ,..., rln 1 -such that }2 jrlj = n I and _. rlj = r 1 . In order to do this we make
J 3

use of the following identity in x which holds for values of x near zero:

(x+x 2 +x 3 +...) rl _= x rl (l-x) -rl

_--xrl (rl +i- 1)! xi (47)
i=O (r 1- 1)!i! "

rl!
Now, the coefficient of x nl in the first expression of the sum of

respect to the rll , r12 , ... , rln 1 subject to the restrictions

_.jrlj = n I and _.rlj = r 1 . But the coefficient of x nl from the first expression
) 3

in (47) must equal that of x nl in the last expression in (47) which is seen to be

rll! ...rlnl!
with

(n 1 - 1)! _ n 1 - 1
(r 1- 1)! (n 1- r 1)! -- (rl 1 )" (48)

Hence, the p.d.f, of runs of GO states r0k , k = 1, 2, ..., n o , and a total number of

NOGO states equal to r I is

where P(E)

P({r0/_ }, rl ) =

is as given in (45).

ro! n 1 - 1

r01!.., r0n0 ! (r 1 1 ) _(r0, rl ) P(E), (49)
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Finally, to obtain the p.d.f of the r0k , k = 1,2, ..., n o , we must sum (49) with respect

to r 1 . Using the definition of/_(r 0 , r 1 ) we see that

n 1

rl E=I (nlr1-1-1 )6(r0,r 1) p(E)

-- 2 ( nl -1 n 1 -1r0 -1 ) P(E)[rl= r 0 + ( r0 ) P(E)[rl= %+ 1

nI --I
+ (r0-2 ) e¢w)lrF 0-1

(50)

Therefore,

P({r0k })
r0! a

ro1 ! ...ron 0 [ '

(51)

where k = 1,2,..., n o , and a is defined by (50).

5. Probability of runs of NOGO states of length k = 1,2,..., n 1 :

By similar analyses we see that

where k -" 1,2,..., n 1 , and

rl!_

r11!-..rln 1! '

(52)

no n o -1

/3:=0_--r 1 (r0-1)6(r0'rx)V(E)
(53)
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6. The joint distribution of the total number of runs of GO states and the total number

of runs of NOGO states:

The p.d.f of r 0 and r 1 can be obtained by summing (49) with respect to r0k

subject to the conditions that _ k r0k = n o and _r0k = r0.
k k

The technique here is similar to that used in summing (46) to obtain (49) and it yields

no -1 n 1 - 1_ro,r__=("o-')( "_ _ )'_ro,r,__/_/. (54)

7. The distribution of the total number of runs:

The p.d.f, of r 0 , the total number of runs of GO states, P(r 0 ) can be obtained by

summing (54) with respect to r 1 . The p.d.f, of r 1 , the total number of runs of NOGO

states P(r 1 ) is obtaincd in a similar way.
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VI. CONDITIONAL PROBABIL_IES

The models presented in section III can be used to answer certain conditional

probability questions in a straight forward way. Suppose we know that GO states

occurred for the past n days, at a particular time of the day, what is the probability

that the GO state will continue for N additional days?

Based on the Markovian property utilized in the models the question may be stated

as follows: given that a GO state has occurred, at a particular time of the day, what is

the probability that the GO state will continue for N additional days? Symbolically,

the situation can be represented as 000.-.0
N

Therefore,

P(GO = NIGO) = (I - oo)N (55)

Similarly, we have

P(GO=NINOGO ) = (1 - 01 )(1 - o0 )N-1 (56)

P(NOGO=NIGO) = 00 o 1N-I 011..-1 (57)
N

and

P(NOGO=NINOGO) = oN. 11...1 (58)
N
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VII. EXAMPLE

To illustrate the methods discussed in this report we give an example. We use the

33 years of data for thunderstorm and non-thunderstorm days for summer (months of

June, July, and August), see Smith and Barfs, Tables 13a and 13b. For comparison

purposes we include the same tables here as tables 1 and 2.

a) Parameter estimation:

To estimate the parameter 01 , _0 we use formulas (26) and (27):

0"1 -- nll 00 = no1
nlO + nll no0 +no1

where nil is the fl'equency of having two consecutive NOGO days (i.e., two back to

back thunderstorm days), n00 is the fl'equency of having two consecutive GO days (i.e.,

two back to back no thunderstorm days), n01 is the frequency of having a GO day

followed by a NOGO day, and nl0 is the frequency of having a NOGO day followed by

a GO day.

From table 1:

From table 2:

Therefore,

and

nll = 859, and n01 = 1363.

n00 = 1328, and nl0 = 1848.

nll 859 - 0.3173
01 - nl0 + nll= 1848 + 859

n01 _ 1363 = 0.5065.
o0 = n00 + n01 - 1328 + 1363
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The significance of the estimates el , °0 is that we actually summarized the 33

years of data in just two numbers !!

We observe here that in estimating the conditional probabilities 01 and 00 we used

bot.____h_htables, i.e. the data for thunderstorm days as well as the data for non-

thunderstorm days! This is because the thunderstorm days and the non-thunderstorm

days are "elusively correlated." An important feature of the methods in this report is

that the correlation between GO and NOGO days is taken into consideration. This is

the basic difference between these methods and the method suggested by O. E. Smith

and G. W. Batts.

To estimate the parameter p, we use formula (29) or (30)

e0 0.5065

= 1 +_0-_1 - 1 +0.5065 - 0.3173-

0.5065 _ 0.4259 - 42.6%,
1.18-_ -

where, _ represents the probability of NOGO conditions.

(b) Time conditional probabilities:

Using the estimates 01 , _0, we can compute several probabilities of interest mentioned

in this report. For example,

(1.) The probability of n successive GO states until a NOGO state occurs

(formula 31) is

0.5065 ( 1 - 0.5065 )n-1 , n= 1,2, ....
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(2.) The probability of m successiveNOGO statesuntil a GO state occurs

(formula (42))is

(1 - 0.3173)( 0.3173)m-1

= 0.6827( 0.3173)m-1 , m= 1,2, ....

Formulas (55), (56), (57), and (58) yield:

(3.) Given that a GO day hasoccurred, the probability that the GO state will continue

for N additional days is

P(GO =N I GO) = (1-0.5065)N ,

Similarly,

(4.) P(GO = N [ NOGO) = 0.6827( 1 - 0.5065)N-1 ,

(5.)

and

P(NOGO = N I GO) = 0.5065( 0.3173) N-1

(6.)

where N= 1, 2,3....

P(NOGO = N [ NOGO ) = ( 0.3173 )N
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